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CORKECTIONS FOR S u m  - OEilWXED BY TEfE 

By Don D L  Davis, Jr . and  Dewey  Moore 

The solid-blockage  Interference for a dmblet an the  tunnel a x i s  
and the boundary interference  for l i f t i n g  wings in clreuhr,  rectanguhr, 
and two-dimensional  slotted  tunnels have been  calculated by substituting 
an equivalent homgeneou b0urdaz-y for  the physical bonnAy of discrete 
elots. In the Cage of smal l  wings, the  interference  calculated with the 
assumption  of homgeneity has been found to be consistent  with  that cal- 
culated far the  discrete slots for as few 86 four slots in a circular 
tunnel. 

- 
- 

Furthermore,  available experimental results  for  blockage  interfer- 
ence  axe  consistent  wfth  the  results of the  present  aaalysis. As a con- 
sequence of the &8smrgtion of homgeneity it  is wssible to express  the 
interference of multislotted tunnels as a function of EL s-le  pm-ter 
which  conibines  the e E e c x  o,f two- p h p f c a l  vm>-s: the ratio of open 
to  total  slotted--  gerimeter-&& t .  nuniber of slote. A FGve' is'" 
presented  which peats the  rapid  evaluation of this parameter and n m r -  
ical  results f o r  lift and blockage  interference  re plotted  against  the 
pmmter. 

- " ". - ." " 

Several  investigators have found that in a wind tunnel with bound- 
aries which are p&ly open and p&ly cloeed,  the boundary interference 
on the lift of a w i n g  can be  reduced nearly to  zero.  References 1 to 5 
deal with  the  case of a daublet in the  center of the wind tunnel,  while 
references 6, 7, and 8 consider  the  effects of wing span. There  are 
several reasom why it would be desirable to have a wind tunnel  with 



2 NACA RM L53EUj’b 

zero-llfi  correction. In the f i r s t  place, the necessity 03 applying the 
corrections w q p f t  9- el-ted, although th is ,  & Ttself ,  is not of  
large  bportancre as long as the  necessary  corrections are known. More 
important i s  the f ac t  that the  pressure  distributions cannot  be  cok&ted, .. 
and- the  distortion of both spanwise and chordwtse pressure  distributions, 
as a resu l t  of bounda;ry interference,  places a l imitation on the size of 
model w h i c h  can be tes ted Fn a given wind tunnel. 

“ 

The  primEuy interest  i n  par t ly  open or   s lo t ted  w i n d  tunnels, how- 
ever, is connected wfth the very different  problem of wfnd-tunnel  chokfng 
at high subsonic Mach numbers,  which is a result of sol id  blockage inter-  
ference and which places a very  severe  limitation on the  permissible 
model size  for  test-  in closed WLnd tunnels. The blockage correction 
for a circulaz  slotted tunnel (a wind tunnel h which the open p m t  of 
the  boundary is distributed around the  periphery  in the form of several  
longitudinal slots i n  an otherwise  solid boundary) his been considered 
i n  reference 9, which indicates theoretically that slot configurations 
ex is t   for  which the blockage correction is greatly reduced. The experi- 
mental resu l t s  that me also included in  reference 9 show that elot ted 
tunnele can be used for aeroaynamic testing in  the  transonic speed  range. 
The conventional  closed and open tunnels are both  unsatisfactory h this 
speed range,  the  closed  tunnel because of choking and the open tunnel 
because  of  the  excesstve power requirements and the large boundary inter-  
ference. Much effort h m  since been expended i n  the experimental devel- 
opment of  transonic sUtted tunnels, and several large  tunnels of this 
type are presently in  operation  (refs. 10 and 11) or  in construction. 
A knowledge of the lift-Interference  corrections  for the slotted tunnels, 
as w e l l  a8 the blockage corrections, i s  thus of  present  interest .  

- 

The lift interference in slatted  tunnels has been considered in 
reference 12. This work has been extended in reference 13 t o  include 
wings of f i n i t e  span, and numerical  results  are  presented  for  several 
configurations  of  practical  interest. 

The calculations  required to determine blockage and lift correc- 
t ions,   for a particular  slotted-tunnel  configuration, by the methods of 
references 9 md 13 me very laborious  especially for  tunnels  wfth a 
large number of slots. In order t o  obtain a general  solution  for this 
problem, Dr. A. Busemann of the Langley Laboratory has suggested that the 
problems of both l i f t  and  blockage interference be treated mathematically 
from the standpoint  of a homogeneous  bounda;ry, wlth the  slot effect  uni- 
formly distributed over the surface of the boundaxy. It was reasoned 
that at some distance from the boundary, i n  the  region of the model, the  
f l o w  would 110 longer show the effects  of the individual  sluts,  particu- 
larly i f  the  actual boundary contained a large nuxtiber of slots. F’urther- 
more, the WLnd tunnels which are now Fn use contain  several slots. It 
i s  f e l t  that t h i s  i e  desirable in  order to  fncrease the uniformity of the 
interference. This paper will t rea t   the  problem in   t he  suggested manner, 

.. 



- beginning with the ckvelopnent of a suitable boundmy c o m t f o n  t o  
represent  mathematically a homogeneous boundary which has the stme f l o w  

boundary, 88 the  actual  physical bounWy of alternate open and closed 
portions of the w a l l . .  N m r i c a l   r e s u l t s  will be  presented for   c i rcu lar  
tunnels with sb ts  uniformly dist r ibuted around the circumference, for 
rectangular tunnels with uniformly dist r ibuted slots i n  the top asd 
bottom walls, for rectangular  tunnels with the  6lot   distribution  deter-  
mined by a transformation *OM a uniformly slotted circular  tunnel, and 
for a tm-dimensional  tunnel. 

" characterist ics,  at a point in the f l o w  sufficiently  remved from the 

The results of  this paper are derived on the basis of an incompress- 
ible potent ia l  f l o w .  'Ilhe subsonic 1 1 i z e d  compressible-fbw  theory 
shows that wind-tunnel I l f t -correct ion  factors  are not affected by Mach 
number; therefore,   the  l if t-correctun  factors  presented i n  this paper 
should apply di rec t ly  to subsonic compressible flows, at least within 
the range of appl icabi l i ty  of the  linearized  theory. The e f fec t  of com- 
press ib i l i ty  upon the blockage interference is t o  increase  the axial- 
interference  velocities with increming Mach n W e r  i n  proportion t o  the 
factor   ( ref .  9 ) .  

A .  mea 

b semiwidth of rectangula;r wind tunnel 

C nondimensional restrtction  constant 
- 
C chord length of a twp-dimensional a i r f o i l  

C 2  section U t  coefficient 

' C  cross-sectional area of tunnel 

lift coefficient CL 

. a ' slot spacing 

h semiheight of rectanguLsr OT two-dimensional tunnel 
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LL ( r a t io  of s u t  w 

radius of  a circular tunnel 

wing area 

thickness of slotted wall 

idth to  slot spacing) 

x-component of additional velocfty due t o  presence of a model 
in  wind tunnel, U - ~0 

free-stream v e b c i t y  at upstream infinity 

x-comgonent of vehxf ty  at any p i n t  

y-component of additional  velocity 

component of additional velocity normal t o  surface of w&U 

z-component of additional velocity 

complex velocity In z-plane 
distances in Cerrtesian coordinate system 

complex p a ,  x' + i y '  
c i r cub t ion  mound a wing 

- 
correction  factor due t o  lift, - - w2 c 

%I SCL 

CORTpleX plane, 5 + fq 
Cartesian coordinates in 5-p- 
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- e angle in polar coordinates 

h height-width ratio for rectangular tunnel 

h' constant appearhg in t r a m f o m t i o n  fram rectangle t o  c i r c l e  
- 

csc a ro 
2 

9, incompressible-flow velacity  potential  

P r d h l  distance i n  polar coordinates 

P density of air in wind tunnel 

a r a t io  of vortex span (effective a span) to diameter of c i r -  
cular tunnel or width of rectangular tunnel 

Subscripts : 

- 0 free-stream  conditions at upstream in f in i ty  

1 due t o  mdel i n  Pree air 

2 due tn presence of tunnel boundaries 

C circulas tunnel 

n in direction normal t o  wall Burface 

R rectangular tunnel 

n,k,s,t summation indices 

r due t o  a row of vortices 

S signif ies  sdditiod term requfred t o  satisfy boundary  condi- 
t i on  at slatted walls 

T total 

BOUNDARY CONDITIONS 

W a l l  xf th  discrete sb ts  .- hngit- and transverse  cross- 
sectional views of a s lo t ted  wind tunnel  are shown in figure 1. In the 
longitudinal view exaggerated  stre8mlines Ltre drawn t o   h d i c a t e  how the 

c - 
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air i n  the  vicinity of the wall f l o w s  out and in through the   s lo t s  as it 
passes  the model. The chamber surrounding the  tunnel is maintained at a 
pressure  equal t o   t he  free-stream stat ic   pressure of  the f l o w  inside the 
tunnel. The difference between this pressure and the average loca l  pres- 
sure of the f l o w  just inside  the w~ll causes the air t o  move out and in  
through the s lo ts .  The boundary conditions at the s lo t ted  w a l l  f o r   t h i s  
flow configuration wi l l  now be considered. . 

Consider a set of axes in  Cartesian  coordinates which are f h e d  with 
respect  to a model i n  the wind tunnel, while the air flows by w i t h  veloc- 
i t y  
the 
the 

The 

comqonents U, v, w. Furthermore, l e t  U = L+, + u, where L+, is 
free-stream  velocity at inf'inity. The pressure at a point  inside 
tunnel at the wal l .  is given  by 

p = H - "(uo2 + 2u0u + u2 + 9 + 2) 
2 

free-streem  pressure po fs e v e n  by 

po = H - ;s2 

Assume now that by 6ome mans the  pressure  just  outside  the wall i s  main- 
tained at poi then,  the pressure difference across the wall is 

4 = p - Po = - '(2.0. + u2 + v2 + a) 
2 

Next, assume that the  relationships between the model s ize  and shape and 
the distance  to  the wall axe such that u, v, w are all much smaller 
than ~0 at the wall. The relat ion between the pressure difference and 
the  axial   velocity ins- the  tunnel  then becomes 

This is R known resu l t  of  the  small-disturbance  theory. Note that the 
small-disturbance  assumption is required  not in the field. of flow near 
the model but  only a t  the w a l l s .  

It is  now required to  find en expression which re la tes  the pressure 
difference  across  the wall t o  the f l o w  through the slotted wall. This 
expression, combined with equation (l), will establlsh the relationship 
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between the axial velocity just inside the   s lo t ted  w a l l  and the f l o w  
through the slots. In order  to find such an expression it will f i rs t  be 
necessary to  study  the energy in   the neighborhood of the   s lots .  This 

wall is that Irinetic energy i s  stored in the air which flows out through 
the slats. This energy is later returned t o  the f l o w  when the air f l o w s  
back through the s l o t s  into the tunnel. Consider a thin slotted w a l l  in 
a f ie ld  of f l o w  with a uniform velocity normal t o  the wall at inf in i ty .  
(See fig. 2. ) Because the f l o w  pattern i s  the same f o r  each slot it is 
permissible t o  study a single channel such as the one in  which approxi- 
mate streamlines have been sketched i n  figure 2. The kinet ic  energy 
enclosed i n  a region  of  this f l o w  bounded  by a transverse  plane at - % I ,  

by the walls" of the channel, and by the slot is given by 

- 
- energy is basic t o  the problem, f o r  the essent ia l  mechanism of the  slotted 

I ?  

n n  

Kinetic  energy = . 

The region  of i n t e p a t i o n  may be considered t o  consist of a surface of 

shown ~II figure 2. The component of velocity normal t o  the closed por- 
t i o n  of the slotted wall must be zero. With regard t o  the open portion,  the 
disturbance  potential w i l l  be  assumed t o  be zero at the slots, i n  con- 
formity with previous papers and with the  c lass ical   pract ice  i n  t rea t ing  

- unit depth normal t o  the plane  of the page w h i c h  includes  the dashed l h e  

and because cp = 0 a t  the slot, these two regions  contribute  nothing  to 
the integcal. With regard to  the  transverse  plane at -%I  it is Clem 
that  i f  t h i s  plane is  suff ic ient ly  far away from the slot the  potential  
w i l l  have a wlue ' P , ~ I  which is essentially  canstant  in this plane. 

Also, 

the  quantity f l o w .  Thus, 

Kinetic energy = - P(P,~, r vnA 1 
2 



I n  order  to complete the evaluation of the kinet ic  energy it is 
necessary t o  determine  the value of the potential  cp I .  Let the coor- 

dinate origin be taken in the plane of the   s lot ted w a l l  at the center 
of  one of the  solid  sections and consider the f l o w  t o   t he  le f t  of this 
slotted wall. With the assistance of reference 14, the  potential  of 
t h f s  flow is  found to be 

-xO 

where k, = d is slot spacing, a is s l o t  width, and ro = 

The plane at -5' is  suff ic ient ly  far from the wall that the  Last term, 
which falls off  exponentially as x' becomes  more negative, may be dis- 
regarded. Thus, 

d '  3 

The insertion of t h i s  

energy  equation results Fn 

Kinetic energy 

v (h loge  csc TL ro + 5') 

value of cp i n  the  previous  kinetic- 

n r t  2 

-x0 ' 

I n  the  sbsence of the  slotted wall, the  kinetic energy per  unit area of 
the flow inside  the  region of: integration would be 

\v 
q Consequently, the  portion of t he   t o t a l  energy which may be regarded as 

' L:Y e y.p being due t o  the presence of the slotted wall is 1 pZvn2 per unlt w a l l  
. b -  --. a 2 
- -  3% mea,  where 
w:>$i 
L. Z = - loge csc E ro d 

Y t  2 

Note that the  quantity I ha6  the dimension o f  length. - 
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- Equivalent horngeneom w a l l .  - Consider, mw, the flow f i e l d  that 
would resu l t  in  the region between -%' and the w & l l  Ff the s lo t t ed  
w a l l  w e r e  replaced by an imaginary homogeneous w a l l  of  zero  thickness 

the  existence in t h e   b c a l  flow of an energy L pZvn2 per unit wall area 

associated w i t h  R local normal velocity  vn. The ve-city of t h i s  f l o w  
f ie ld ,  at -+', xill be essentially  the same ae that of the slotted- 
wall f l a r  f ie ld ;   fur themre ,   the  t o m  kinetic energies between the 
planes at -5' and at the walls w i l l  be the same. For the purpose of 
calculating  the f-w t o  the left  of  - + I ,  therefore,  the homogeneous 
wall is equivalent t o  the s lo t t ed  wall. 

- through which potent ia l  f l o w  i s  possible and which is characterized by 

2 

The r e su l t  which has been  obtained 'by stuaying the  re la t ively simple 
flow from a source at -QI ,is that there is associated  with  the f l o w  
through the slots a kinetic energy that is a function of the dimensions 
of the  s lot ted wall and of the  average velocity normal to   the  wall, and 
that this energy may be  considered t o  be concentrated at the   phne  of  the 
wall for the purpose of determinhg the p o t e n t i d  of the f l o w  st a point 
suff ic ient ly  far r eme  f r o m  the wall. If the singularity i s  located 
at a finite distance f r o m  the WELL, or  i f  singuLarities of types  other 
than sources are introduced, there will be a velocity component pa ra l l e l  
t o  the w a l l  in addi t ion t o  the normal component vn. Application  of  the 
principle of superposition shows,  however, that the energy which is asso- 
ciated with a given f l o w  normal t o  the wall w i l l  not be affected by the 
presence of additional velocity components p ~ 3 . 8 L i e l t o  the surface of the 
wall. It is necessary, though, that the slot spaclng be small enough so 
that the  difference in fkm through  adjacent slots is small. Thus, the 
analysis w i l l  be applicable only t o  tunnels with s e m a l  slots. With 
th i s  qualification  the homogeneous wall dll be equivalent  not only  t o  
the slotted wall of figure 2 but also to the slotted wind-tunnel w a l l  of 
figure 1 (section A-A) Fnsofar as i t s  e f fec t  on the model is concerned. 

- 

If the s lo t ted  xall of figure 1 is replaced by an equfvalent homo- 

geneous wall, the energy per unlt area at the wall is  - ptvn2 and the 1 
2 

momentum associated WLth t h i e  energy i s  p Zvn per unit wall area. An 
individual par t i c l e  of air w h i c h  follows the  outer  streamline shown in 
figure 1 flows out and in  through the vall as it passes the model as a 
result of alternate outward and inward accelerations due to the  pressure 
difference across the slo t ted  wall. T b e  direct ion of f l o w  of  the normal 
component of velocity  does  not, in  general,  correspond to   the  direct ion . 
of the pressure  dlfference  across  the u". Instead, it i s  the  direction 

pressure  difference. This pressure  difference, which ac t s  in a direction 

- 

- of the normal acceleration which corresponds t o  the direction of the 
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n o m 1  to  the wall surface m u s t ,  in   the  potent ia l  f l o w ,  be equal t o  the 
rate of change of the momentum associated with the 
nus, 

Although the quantity 2 is constant in time at a 
wall, it is left under the different ia t ion  s ign in 

presence of the slots. 'I 

e v e n  
order 

point on the  
not t o  exclude 

the  possibil i ty that the slot  configuration II& vary from point to point 
on the  tunnel w a l l .  The only res t r ic t ion  which i s  placed on the axial 
o r  t ransverse   mia t ions  of 2 i s  that they must not be too  rapid, 
because the equation for 2 has been derived on the basis of a two- 
dimensional f l o w  asd a uniformly slot ted wall. The derivative is given 
by 

Since the f l o w  is steady and the sL3t configuration is  constant i n  time 
when referred to the fixed axes, -(2vn) a = 0. If now 

z(~vn)  a are assumed t o  be of the same order as z(Zvn) a (or  of higher 

order) then the acceleration I s  given by 

L 

&n) * a 
a t  - 

t o  the same order of approximation as was used in  obtaining  equation (1) . 
The pressure  difference ~ ~ 0 8 8  the w a l l  i s  thus related to  the velocity 
through the wall i n  the following manner: 

Equatine; (1) and (4) fo r  the pressure difference results i n  

-u = z(zvn) a 
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. Let the potent ia l  of the flow be given by Q = -I+,x + cp, where cp is 
the  disturbance  potential. In terms of this potential  the  preceding - equation becomes " 

Integrating th i s  equation i n  the  x-direction ahng the wall gives 

' + ' a n  
3 equal t o  a constant. One of the boundasy conditions which 

must be sa t i s f i ed  by the wind-tunnel flow is that there  be no disturbance 
a t   i n f i n i t y  upstream, so the constant must be zero. Thus, the boundary 
condition a t  the wall becomes 

- At t h i s  po in t   l e t  it be emphasized that, although this condition must be 
sa t i s f ied  everywhere on the b o w ,  all the symbols, including 1, 

' refer to only  local values of  the quantities  represented. Thus, 2 has 
been l e f t  free t o  vary in  both  d-ections on the  surface. The boundary 
condition may therefore be used in the  study of wina tunnels in which 
the slot width is  variable i n  the axial direct ion. .   Furthemre,  adJa- 
cent slots may be of Uferent width or  different  epacing. 

Although on ly  a plane wall was  consfdered i n  d e t e d n i n g   t h e   r e l a -  
tionship between the wall dimensions and the  wall-restriction con- 
stant ,  2 ,  it is possfbk t o  shov that the same relationship holds for 

a circular  wall. Consider the  transformation 5 = ez applied t o  the 
region between y = d/2 and y ' = -d/2 in the f l o w  field shown in f ig -  
ure 2. B y  using polar coardinates (r,e) in  the (-plane, there is  obtained 
r = ex' and B =y'. Thus, the l i n e  x' = 0 transforms into an arc of a 
c i r c l e  of radius 1. (See f i g .  3 .) Because of the mar transformation 
between y ' and 8 ,  the open r a t i o  of the wall is undmqed by the t r a n s -  
formation. The source of the flow in the !&plane at x ' = -m transforms 
i n  the  (-plane  into a s o m e  at r = 0. m e  line x' = 00 transforms into 
the arc r = m. The expressfon for  the potent=  inside  the w a l l  is 
obtained by applyfng the  transformation t o  equation 2. 



The potential  of  the  source at the origin in the absence of the w a l l  
would be rp = -vn loge r. Thus, it follows that the  additional poten- 
tial at a point ins- the way, due to   the  presence of the wall, is 

nearly vn ;F loge  csc ro. Conaequently, the restriction  constant 1 

f o r  a circular  tunnel is obtained i n  the same manner as fo r  a tunnel 

with  plane walls. The function loge csc $ ro is plotted in figure 4. 

d 
2 

Consfderation of equation (6) w i l l  give some idea of the degree of 
approximation involved i n  assuming the additional  effective  energy due 
t o   t he  presence of the s l o t s   t o  be concentra3xd in a plane at the w a l l .  
As an example, calculations have been made for a circular tunnel with 
8 slots, for wbich p = 7, where p = csc E ro. (This gives an open 

r a t i o  of s l igh t ly  over 0.09, which is i n  the  range  of  practical  interest.) 
Figure 5 shows  the potential  given by equation ( 6 )  plotted  against the 
radial distance from the center of the tunnel. The calculations were 
made along r a a l  lines through the  center line of a slot (e=t)and 
through the center liae of a panel ( e  = 0) . Also presented is a curve 
calculated from the approximate o r  homogeneous wall equation 

2 

Inspection of figure 5 shows that the amroxhat ion  is quite  satisfactory 
for the flow i n  the central   per t  of the tunnel ( s a y  r < 0.6) . For tun- 
nels with mre than 8 slots, the region of validity of the amoximation 
will be even larger. 

ANALYSIS 

Circular W i n d  Tunnel 

L i f t  interference.- Consider a lift- w i n g  synrmetrically located 
i n  a circular w f n d  tunnel which has a homogeneous boundary through which 
potential  flow is  poesible. I;et the wing be represented by a single 
horseshoe vortex. The downwash at the wlng will be determined, i n  the a 
classical  manner, by finding the downwash in a tunnel cross section far 
downstream  due t o  EX patr of mrtices of opposite s i g n  with circula- 
t ion r/2, where I' is  the c i rcub t ion  of  the horseshoe  vortex in the 
tunnel. The disturbance  potential in the plane w i l l  be taken as 'pl -t q2, 
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where ‘pl fs the potent- of the vortices In a free f k l d  and ‘p2 is 
the Interference  potential due t o  t h  walls. A L L  length dimensions will 
be made nondimenslunal by dividing by the tunnel radius R. !&e bo- 
condition at the valJ (p = 1) is then 

where c = L, the nondimensional restriction  constant.  
R 

The Interference  potential ‘ ~ 2  must satisfy  the  equation 0% = 0 
throughout  the  interfor of the tunnel. In polar caordFnates t h f s  eqw- 
t l o n  becomes 

By the method of separation of variables, the following family of solu- 
t i ons   cm be obtained: 

Since ‘p2 must be finite everywhere inaide the tunnel, it must be f i n i t e  
at p = 0 and, therefore, Cbn = 0. kt e = 0 be in the plane of the 
whg. Then, because of the  synmetrical  location of the wing, it is 
apparent that %(e) = *(YC - 8 ) .  B e  cosine  terms, which do not sa t i s fy  
t h i s  requirement, m e  omitted by setting Cm = 0 (except when n = 0) . 
The solution may now be  put i n  the form 

- The potential  of the vortex pair  in  a free field is, i n  polar coor- 
dinates, 
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'PI = - 

where (I is  the nondhensianal semispan of the vortex  pair. Also, 

In  order t o  find the interference, equations ( loa)  and (lob) can be 
expanded in  Fourier  series at the position of the wall. These series,  
together with equation ( 9 )  , can then be inserted in the boundary condi- 
tion,  equation (8), in order t o  determine the  constants A, in the di6-  

turbance  potential. The expansions for cpl and - * at p = 1 are of 

the  form 
aP 

No constant  terms anear i n  these expansions so A, = 0. By substi- 
tut ing (g), (ll) , and (12) i n  (8) the folio- equation is obtained for 
each value of n: 

e, s in  ne + B, s i n  ne + cnA, s i n  ne + cCn s i n  ne = 0 

After 42 is found, there remains the problem of determining  the .I 

vert ical   b terference velocity, and from it the Interference  factor 6. 
The vertical   interference  velocity along the line 8 = 0 is  given by 
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The average interference velocity between the or igin and the point (u,O) 
is 

n= 1 

The interference  factor 6 &B given in reference 15 can be written as 

C cross-sectional area of tunnel (a f o r  the  tunnel of unit 
radius) 

S wing mea 

CL lift coefficient 

uo tunnel  free-stream  velocity at upstream i n f h i t y  . .  

The circulation is related t o  the lift by 

U s i n g  this relatian there is obtained 6 = - Substituting for  F2 
from equation (I4.b) 

- 4ar w*. 
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m 

n=l 

h s t e d  of act- making the expansions indicated in equations (EL) 
and (E), it is possible t o  infer the values of the  constants B, and C, 
from the known corrections fo r  open and closed  circular wind tunnels. 
For a closed circular tunnel Silverstein and White .(ref. 15) give  the 
equation 

Wng use of the series expansiop (ref. 16) 

the folluwing equatFon may be written after settFng = $: 

n= 1 

But equation (15) gives, for c = 03, 

m 

n=l  

Because equations (16) and (17) mst agree, and since they can only agree 
i f  the series  coefficients are identical, term by term, then 

c, = 2 8  (n = 1,315, * 0 )  

cn = 0 (n = 2,4,6,. . .) 
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The correctian-for an open circular tunnel is simply the  negative of 
equation (16) . For t h i s  case ( c  = 0) equation (15) gives 

% = O  

(n  = 1,3,5, 9 )  

(n = 2,4,6,. . .) 
Substituting equations (18) and (20) In (15) resu l t s  in, finally, 

This correction is plotted a.s a functlun of the nondimensional r e s t r i c -  
tion  constant in figure 6 for wings of small span. 

For the c i r c m  tunnel the nondimellfflonal restriction  constant is 

given by c = 'a lo& p, '.#here d i s  the angle betmen two successive 
slot cent& m a .  ~ & e  the n e e r  of slots N around the circumfer- 
ence of the  tunnel Is given by &/d, then 

.. 

st 

c = - l o & p  2 
N 

for a circulas a d  tunnel. 

Solid-blockap;e interference .- Consider next the problem of eolld- 
blockage interference in the clrcular wind tunnel. The solid body i n  
the tunnel is represented by a -let with axis alined wfth the axis of 
the  tunnel  cylinder, and located at the origin of coordinates on the  axis 
of the tunnel. The f l o w  potent ia l  i s  egab repreeented by 'pl + 'p2, 
where % is the free-field potent ia l  of the doublet and cp2 is the 
interference  potential due t o  the presence of the m g e n e o u s  wall. The 

- 



boundary condition which must be sa t i s f ied  at the wall (p = l.), for all 
values of 8 and all values of x, is again given by equation (8). 
Laplace's  equation Fn cylindrical  coordinates, which must be sa t i s f i ed  
by cp2, is  

i n  the  case of  c i r c u h r   s p n e t r y  about the longitudinal axis x. The 
solution of  thfs equation which will be  used f o r  the problem under con- 
sideration is 

J 

where Io and I1 me  the  modified Bessel functions. 

The free-field  potentFal of the doublet i s  q1 = - X 

The value at the wall of this potential  and i ts  derivatiG is now expanded 
Fn Fourier series form. 
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The functions % and (21 are defined by equations (25) and (27) Vpon 
substi tuting the preceding equations Fnto equation (8), the b o w  
condition becomes 

For each Ak there resu l t s  

Ak = 

an equation 

Substituting this in the equation for the interference  potential  gives 



20 - NACA RM L53ED7b 

If, now, the  fundamental wave length of this expression L is -wed 
t o  approach infinity,  the summation can  be replaced by an integral .  The 
necessary relationship can be obtained 8s follows: 

Since k takes only integer d u e s ,  the  interval d (F) - is S-lY 4 .  

(See, also, ref. 17.) By using this relationship and setting q = h, 
equation  (28) becomes 

L 

The remaining task i s  to  evaluate (+, and Q1. If equations (25) 
and (27) are integrated by parts the resu l t s  can be brought to the form 
(see  ref .  18) 



NACA FU4 L 5 m P  

The f ina l   r e su l t   fo r  cp2 is, 

- 

. .  

then , 

The interference  velocity is 

This  equation is 

unit  radius. For the 

21 

for  a doublet of strength = = 1 in a tunnel of 

general case, a t  the origin, 
4% 

where R is the tunnel radius. The axial interference  velocity is 

plot ted as a function of - 1 )1’2 f m e  7. This  parameter is  

chosen because it results in  an approxFmately linear variation of the 
bloclrage interference. The values were obtained by mechanical integra- 
t ion of equation (31) . Fortunately, the value af the integrand converges 
rapidly toward zero with increasing q.  A t  q = 5,  for  instance,  the 
value of the  integrand was 1/2 percent  or less of its maximum value i n  
the  calculations which have been made. 

c + l  

Rectarrgular Wind Tunnel W i t h  Top and Bottom Walls Slotted 

Lift interference.- Consider a rectangulerr wind tunnel of semiwidth 
unity and semiheight h .  Inside the tunnel i s  E vortex  pair of semi- 
span u located w i t h  the span para l l e l  t o  the width (y) axis of the 
tunnel and with the  center on the  center lFne of the tunnel. The verti- 
ca l  walls at the  sides of the tunnel are closed, but the horizontal walls 
at  the top and bottam, with  mndimensional restriction  constant 2 ,  are 
par t ia l ly  open. The boundary condition at the closed side w a l l s  ( y  = a) 
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is, of course, - a'p = 0. This condition is  sa t f s f ied  by a horizontal row 

of vortices along the plane z = 0 (the  reflected images, out t o  y = +CU, 
added t o  the vortex  pair  inside the tunnel) . The potential  of  such a 
row is given by 

a Y  

and the  vertical  derivative by 

sin x(y - a) s i n  x(y  + a) 
C06h xz - COS ~ r ( y  - a) C 0 6 h  YCZ - COS YI(Y + a) + 

To the potent ia l  % another  potential cps is  added in order t o  
sat isfy  the boundary condition a t  the horfzontal xalls. The t o t a l  poten- 
t i a l  'pT = cpr + 'p, must satisfy  the  conditions 

A t  y = k l  

At z = h  

A t  z = -A 

'pT+ 2 - = o  a% aZ 

cpT - 2 - =  %r 0 aZ 

Since % d r e a d y  satisfies equation (*), 'ps must a b o  satisfy (9) . 
A solution of Laplace's  equation which meets this requirement 

I- 

is 

] (37) 

c 



Because 'pr is an odd function of z and - is an even function, it *r 
82 

is  necessary that 'ps be an odd f'unction  of z i n  order that both  eqm- 
t ions (35) and ( 3 6 )  may be sat isf ied.  Consequently, B, = 0, and 

Now, l e t  equations 
at the boundary z = h .  

?r cos m y  

+ 9  J 
i n  Faurier cosine series 

n= l  

( I t  i s  apparent from the form of equation (33) that there can be no con- 
stant term i n  equation (39b) .) If equations (38) and (%) are substi- 
tuted i n  equation (35) the following coefficient  relationships axe found: 

c o + A J + t A , = o  (n = 0) 

Thus, 
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Let ' p ~  = cpl + 'p2 where  again 'pl is the  free-field  potential of the 
vortex  pair aside the tunnel and is the  interference-. gotentie. 
Born the  free-field.  potential of the vortex pa* 

. -  - 

45r 45r +l y - a  Y + U  
--1=---= r 32 (y - u p  + 22 (y + u p  + 22 

- 

Thus, the  interference  velocity  at any point (y, z)  is 

)- mA, cos m y  cosh m z  - A, - 
n= 1 

The averege  interference  velocity i n  the 

Y - u  + Y + U  

(y - a)2  + z2 (y + a)* + 22 
(41) 

plane of the w i n g  (z = 0) is  

In order  to  evaluate this fntegral, obtain  first 

1 - cos 5r(y - a) - 2ch s i n m y  - 
r n=l 

AS y appr08.Ches u the first and last terms  approach minus and plus 
infinity,  respectively. In order  to  eliminate  the  Fndeterminateness, 
the two terme are ccazibined and the cosine is expanded in series form. 
Finally, the  limit is taken as y approaches u .  



. 

4 2  2 
1 - cos a a  2 

By ualng this limit, 

4xa 

I =  

the average interference  velocity becomes 

For this rectangular tunnel 6 = - w2h. so ray 

Correction factors   me  plot ted as a function of the r e s t r i c t ion  
constant fo r  several values of u in figure  8(a) fo r  a square  tunnel 
( h  = 1) and i n  figure 8(b) f o r  s tunnel  with h = 0 . 5 .  The nondimen- 
sional restriction constant is defined as c = where h is the semi- i? 
height of the tunnel. For the tunnel under consideratLon  then,  c = 4. 
The value of c for a rectangular  tunnel of height-width ratio h w i t h  
N slots in each horizontal wall is given by 

h 

. 
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Solid-blockage  interference.- Conslder next  the problem of solid- 
blockage interference Fn the rectangular KL& tunnel  with  top and bottom 
walls slotted. The solid body in the tunnel i5 again represented by a 
doublet  with a x i s  alFned uith axis of the tunnel and located at the  ori-  
gin of coordinates on the tunnel axis. The boundary conditfon at the 

closed side wall (y  = +1) is - *T = 0. This  condition is  sat isf ied by 

a horizontal row of doublets with axes alined with the axis of the tun- 
nel  and placed along the line x = 0, z = 0 at y = 0, y = f2, 

aY 

y = *4, . . . y = *too. The potent ia l  of such a row I s  given by 

qr = - ”-) X 
4s 

k y  + 2k)2 + 22 + 2J 3’2 k= -m 

and the   ver t ical  derivative by 

3zx 

[y + a)* + 22 + p 2  

The t o t a l  potential = + cp, must satisfy equations 
and (36)  . As before, cps must sa t i s fy  equation (34) . A 
Laplace’s equation which meets this requirement is 

(45) 

cos m y  sin = (47) L 



Now let equations (45) and ( 4 6 )  be expanded in Fourier c o s h  series 
at the bollndRlly z = A .  W n ,  

where 
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" - 4P 

By substituting  equations (48), ( k g ) ,  ( 5 0 )  , and (51) into  equation (35), 
Ast can be written ae 

3." my .in y i 
As L approaches 00, t h e  integral with respect  to L in equation (55 )  
becomes 



In  reference 19, the first 

J 

integral  on the right is m i t t e n  as 

t i o n  (56) by -RdR and then  integrating  both sides Kith respect to R 
from R t o  Q) gives 

Let L approach a. Then, the interference  potential 'ps and i ts  
derivative wlth respect t o  z can  be written 88 

f 
Px"Y ap i 
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where 

C(h,s,q) = cosh hiq' + 

and where 2 has been replaced by ch. The interference  velocity 9 
of a doublet  symmetrically  located in a tunnel with i ts  axis dined with 
t h e  axis of  the  tunnel i s  gfven by 



This is for a doublet of strength rn/h in a t U e l  of unit  semi- 
width. For the  general  case, at the origin, 

Y=o 
z=o 

Equation (39) xas solved numerically  for the interference  velocity 9 
of a doublet in a square tunnel ( h  = l), and the r a t i o  9b3/1n is plotted 

w t  i I  h f f g u r e g .  
c + l  

L i f t  Interference i n  Rectangular Tunnel 

With A l l  Sides  Slotted 

Consider the lift interference for a small Ueting wing symmetrically 
located in a rec- wind tunnel of semiheight h and unit semiwidth 
and with all four sides slotted. Tfie widths of the  individual slots axe 
determined by calculating  the  points on the  wal ls  of the rectangular tun- 
nel  which correspond to   the  610t edges of a uniformly s lot ted  c i rcular  
tunnel, with the assistance of a transformation which maps the  perimeter 
of a rectangle of semiheight h and unit semiwidth into  the  perimeter 
of a c i r c l e  of unit radius. In the analysis of this particular problem 
the transverse  cross-sectional  plane of the ret- tunnel, which has 
been previously the y, z-plane, will be taken as the complex Z-plane where 
Z = x + i y .  The cross-sectional plane of the circular  tunnel, which has 
previously been t reated in terms of the polar coordinates (p,8) will here 
be taken as the complex 5-plane where 5 = 5 + iq. I n  reference 20 the 
transformation which maps a rectangle Fn the 2-plane in to  a unit c i r c l e  
in   the c-plane i e  given a6 

or 
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and A '  is determined from 
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E =  K ' =  h' 
2 2A 

where K and iK' arre the  quarter  periods of the 
el l ipt ic   funct ions.  A method for calculating A '  

preceding  Jacobian 
and tables of the 

preceding  Jacobian el l ipt ic   funct ions  are  also given in reference 20. 
The quadrantal  perimeter of  a square ( h  = I) and the  quadrantal  perimeter 
of a rectangle (A = 1/2) were  mapped in to  the  quadrantal  arc of a unit 
c i r c l e  by using equation (61) and the resul ts   are  glven in figure 10. 

The l if t-correction  factor f o r  a smal l  l f f t i n g  wing symmetrically 
located i n  a  rectangular wind tunnel may be written a8 

since vm = (v2R)z,o 
- 

for  a small lifting wing. 

The complex velocity i n  the 2-plane at a point on the  x-axis i s  

or 

The interference  velocity for  the rectangular tunnel is thus 

In  reference (21) d(/dz i s  written as 
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at  the origin. Evaluation of equation (1ob) at the origin gives 

From the  analysis of lift interference in a c i rcuhr   tunnel  (eqs . (14a) , 
(131, (18) , anel (201) 

% c = - -  3 3 
at  the origin. The vortex semispan in the c i r c W  tunnel bc is deter- 
mined from equation (61) by setting Z = bR (whence, f = ac). The 
velocity vm is given by 

a t  the o r f e n .  This' differs from vE (eq. (67) ) only became of the 
change i n  vortex span. If, now, equations (66) , (67) , (68) , and (69) 
are substi tuted in equatbn  (65)  the resu l t  is 

Substituting this in  equation (63)  gives, for the l if t-correction  factor 
at the center of the vortex span, 

In the limit CR + 0 this becomes 
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where m is the parremeter (see ref. 20) of the  e l l ipt ic   funct ions of 
the  transformation. The behavior of m is such that if  A < 0.5 it is  
suf f ic ien t   to  use 

When h > 2.0, the  correction  factor i s  approximately 

Equations ( 7 2 )  apply to uings of small span. 

The lift correction a t  the  center  of  the wing has been calculated 
for  a small wing i n  
rectangula;r tunnels 

i s  plotted  against 

a equare tunnel (A = 1) and for a s d l  wing i n  two 
(A = 0.5 and A = 2); the  l if t-correction  factor % 

h f m e  II. 
c + l  

Two-Dhenslonal Tunnel 

L i f t  interference.- Consider the problem of the lift interference 
i n  a two-dimensional wind tunnel ~5th the top and bottom walls slot ted.  
The wing in  the tunnel will be  represented by a two-dimensional l i f t i n g  
vortex  located at the origin of the  coordinate syBtem,  which is centered 
between the slotted walls.  The potential  of thls vortex in a f r ee   f i e ld  
is 
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and the vertical   derivative is 

- .  

The interference  potential  takes  the form 

02 

'p2 L L 
n= I 

mere is ILO interference along the  tunnel  center -e (z = 0) 

because - = 0. The vertical   interference at the origin is simply acp2 
ax 

w2= - - =  t3Z 'A, 

Inasmuch as the sunmation does not  contribute to the wall-induced 
velocity at the origin, it is suf f ic ien t   to  study the  term &z by 
i t s e l f .  If the  multiple-valued  function for 'pl is set equal to  zero 
at the upstream infinity (z = 4) it is apparent that the Fourier ser ies  
expansion of 'pl at the top  all IKU resat in a constant term - 

4 
plus an odd function of x. The expansion of &p$z will be an odd 
function with no constant term. Thus, if  the constant terms i n  cpl, w, 
and m e  inserted in the boundary condition at the upper wall 

(Z = h) 

cpT+ 2 - = o  acpr 
t3Z 

the result is  

(74) 
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where  c = L. The vertical  interference  velocity at the  origin is  given 
h 

by 

Thus, the  interference is found t o  be downwash at  the origin which 
varies in magnitude f r o m  zero for R closed  tunnel t o  B maxfmum for the 
open tunnel. Because 

t h e  induced-flow angle at the o r i g i n  is 

where 

and 

d 

h 

rO 

- 
C 

slot spachg on horizontal waJ l s  

half-height of tunnel 

open r a t io  of the uniformly slotted horizontal walls 

a i r fo i l - sec t ion   l i f t   coef f ic ien t  

a i r f o i l  chord 

The induced mgle is, of  course, not  constant along the ckord of the 
airfoil;  therefore, the wall-induced f l o w  can be considered t o  have a 
certain  curvature. 'This curvature has an effect simflar t o  that of camber 
i n  an a f r fo f l ,  and i f  the length of the chord of t h e   a t r f o i l  i s  suffi- 
ciently great compared t o  the height of the  tunnel, a curvature correction 
is required (ref. 3) . This curvature can be determined from E complete 
solution for % (eq. (73)) under the boundary condition of equation (74) . 
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- Solid-blockage  interference .- Consider the problem of solid-blockage 
interference in a two-dimensional wind tunnel with top and bottom walls 
slotted. The so l id  body in the  tunnel will be represented by a two- 
dimensional doublet with axis alined w%th the tunnel axis, and located 
at the or igtn of coordinates on the tunnel axis. The ptentfal of this 
doublet in a free field is given by 

and the vertical derivative by 

The interference  potentia3 ' ~ 2  must satisfy Lapme's  equation. Since 
'pl is  an odd function of x and an even function of e, 92 must &so 
be an odd function of x and an even function of z. Therefore, 'p2 
can be written as 

00 

'p2 1 Ak C08h h E  s in  a L L 
ll=l 

and the normal derivative by 

The boundary condftians to be satisfied along the s lo t ted  walls (e  = +h) 
are 



These conditions ere m t i s f i e d  by expanding 'pl and &p,/az into 
Fourier sine series in x along the  slotted walls aad then solving for  
the  coefficients of  ' ~ 2  that ecttisfy  these  equations. Along the 
l i ne  z = h, equations (76) and ( 7 7 )  can be written 8s  

where 

k=1 

and 

A single integration by parte resu l t s  in  

BY substituting equation (83) fo r  % and equation ( 8 4 )  for  ck into 
equatlons (81) and (&}, respectfvely, and then solving equa- 
tions (&I), (81), and ( 8 e )  for Ak, the result is 
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By substituting equation (e) for A, into equation (78), the   resul t  is 

- cos - - a sfn - 
m cosh efn k!SZ 

ha 
L 

c? + h2 
da 

q2=" 
fl2 L cosh + 2 sinh L L 

L 

b 1  

e-@( zq - I) 
cosh qh + Iq sinh qh 1 cosh qz sin qx d.q 

where qh has been replaced by q and c = 2 The interference veloc- 
h' 

ity is 
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A t  the origin,  equation (88) reduces t o  

.- 
qe-q(  cq - I> 

cosh q f cq sinh q 
as. ( s s )  

Equation (&) has been evaluated numerically, and the  axial-interference- . 
velocity  f'unction %h2/m is plotted  against (z in figure X .  

DISCUSSION 

Application of the  Results of the Interference Analysis 

Consider the problem of  determining, say, the  correction  factor 6 
for  a pa;rticule;r wlng in EL square  tunnel. The tunnel has four slots i n  
each horizontal wall, with an open r a t i o  of 0.164. The ver t ica l  walls 
are closed. From figure 4, log, CBC 5 ro = 1.37. After using equa- 

t ion (44) t o  determine  c, the value of 2 is computed' t o  be 0 .&. 
c + l  

The wing has an effective span of  one-half the tunnel width, and for  t h i s  
case, figure 8(a) gives the value of the  correction  factor as -0.062. 
If a semispan reflection-plane model of a wing of  twice t h i s  span is 
tested, the effective height-width r a t i o  of  the tunnel w i l l  be 0.5 and 
the correction  factor xi11 be -0.146. 

Comparison With Previous Results 

A comparison of the resu l t s  for  the lift interference of  circula;r 
tunnels with the results of reference 13, i n  which the individual s l o t s  
are considered, shows st r iking agreement fo r  w i n g s  of small S P ~  ( f ig .  6 )  . 
In the case of a lifting doublet in the center  of the tunnel  the?reeults 
agree withb 2 percent  for only  4 s b t s  and even more close- f o r  greater 
numbers of  s lo t s .  This agreement would seem t o  be sufficient proof of  . 
the  justfficatfon  for the basic assumption underlying the present  theory, 
that the wall can be considered to be homogeneous. This assumption is 
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not made in reference 13. The theory of this reference  Fndicates that 
fo r  sma l l  numbers of  slots,  say 2 o r  4, the l i f t  interference varies 
appreciably wtth the  orientation of the slots. Thfs variation, of course, 
cannot be predicted by the present  theory. 

The results of the analysis of so l id  blockage interference are corn- 
pared with the results of the analysis of  reference 9 in figure 7. The 
results of this reference are seen t o  straddle the c.urve obtained in  the 
present analysis. The spread i n  the results of  reference 9 may be due 
to   the   fac t  that the series used in the calculations converged very slowly 
i n  the  case  of  ten slots. 

The present  theory xi= now be compared with the experimental  results 
.of  reference 9 .  For the Ul-slot circuLar  tunnel the present  theory pre- 
dicts a small negative  interference. The magnitude of this predicted 
interference is  about 1/15 that far a closed tunnel and about l / 3  that 
fo r  an open tunnel. An inspection of figure 7 (ref. 9 )  shows that the 
measured interference i n  the slotted tunnel checks  very  closely with 
these values. This is  a single-point comparison a t  the midpoint  of the 
body,  however, so it can not be regarded, i n  i tself ,  as a complete veri- 
f icat ion of the theory. In fac t ,  t h i s  body was so large with respect  to 
the  tunnel  diameter that the present  theory, based on a doublet in the 
tunnel, could h a r d l y  be expected to apply. 

. A much s m d l e r  body was tes ted in the 8-slot actagonal tunnel  of 
reference 9. Far th i s  tunnel the present theory predicts the value of 
the  axial-interference-velocity function to be -0.006. This is less than 
5 percent  of  the magnitude of the interference in a closed circular  tun- 
nel.  The predicted interference  velocity  ratio for the lk - inch mdel 

i n  the slotted tunnel is - = -0.0002 fo r  incompressible f l o w .  Even 

when multiplied by the compressibility  factor (1 - M2)-’l2, it is obvi- - 
o m  that this correction is within the usual experimental accuracy fo r  . 
Mach numbers within the range of application  of the l inearized theory. 
For instance, at M = 0.9, the axial interference  velocity is approxi- 
mately 114 of  1 percent  of  the free-stream velocity. The experimental 
results in figure I2 of reference 9 s h o w  that the interference w a s  negli- 
glble  along the -le le&h of the body at all speeds up t o  a Mach num- 
ber of about 0.9, Thus, these experimental results are consistent with 
the present  theory with regard to blockage interference. 

3 
u2 
uo 

Application of the Concept of a Restriction Constant 

The concept of a restriction  constant can be useful i n  other w a y s  
than i n  the direct solution  of problems In slotted vall interference as, 
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for  instance,  in provlding a c m n  basis of compazison for  walls with 
different slot sp~cings .  As an example of thie  type of  problem, consider 
a circular  tunnel with eight  evenly  spaced slots around the circumfer- 
ence, with an open r a t i o  of 0.15. Suppose it is desired  to  construct 
another  circular tunnel w i t h  the same interference  characteristics as 
t h i s  tunnel  but that it is  a lso  desired  to  increase  the number of slots 
t o  12. For the given &slot tunnel c = lo& p = 0.365. For the same 

value of  c, the =-slot tunnel must have an open r a t i o  of 0 .Op. 
s 2 

U s i n g  t h i s  concept, it fs also possfble  to determine the  effects  of 
changfng the shape of the slot cross  section. With the  realiza-bion that 
the  theory depends q o n  an essentially  potential  f l o w  in   the  slots, for 
instance,  the  question arises as t o  whether the sharp-edged slots could 
not be  improved  upon. It might be advisable  to  try  smother shapes In 
an attempt to  obtain EL closer approximation to   po ten t i a l  f l o w  i n  the 
s lo t s .  The restriction  constant 2 could be determined for arry e b t  
shape ei ther  analytically by calculation of the  potential  f l o w  through a 
group of such s lo t s  Fn cascade o r  experimentally  by a simple e lec t r i ca l  
analogy. Once 2 has been  determined the results of the present  analysis 
could be used to  predict  the  interference  for such slots. 

Experimental  Determination  of the  Restriction Constant 

If experimental data of sufficient  accuracy t o  permit  the  evaluation 
of the lift- o r  blockage-correction  factor  for a p&icula;r s lot ted tun- 
n e l   m e  available, the effective value of & can be read W e c t l y  

f romthe curves  presented in this paper. Once the value of this pmsmeter 
is known, corrections may be computed for other -8 i n  the same tunnel. 

c + l  

Lfmitatiom of the Theory 

Some question arises a B  t o   t he  range of val idi ty  of the equation 
for the restrictfon  canstant of a slotted wall, inasmuch a8 the  open r a t i o  
required t o  obtain a given value of c decreasels rapidly &a the number 
of slots fncreaaes.  Since the normal mas6 f l o w  remains constant  vith c, 
this   requlres  a conthuously  increasing normal velocity in  the s lo te  
which, although it ia permissible i n  the assumed incompressible f l o w ,  is 
not  possible in the actual phyeical f l o w .  It appears, from these consid- 
erations, that the limit of  applicability  of  the  restriction-constant - 
equation WILL be determined by the required 110- f l o w  velocit ies  rather 
than  directly by the smallness of the slots. This limitation ~hould be 
considered Fn the application of the  results of this analysis t o  the 
des- of  wind-tunnel test sections. 



- There is, also, some question regarding the  use of potential-flow 
theory  in the region near the   s lo t s .  !This question ar i ses  because the 
potential  theory  omits certain f b w  phenomena, i n  particular,  the  pres- 
ence of a mixing  region at the boundary between the moving tunnel air 
and the   essent ia l ly   s ta t ic  afr outside. The adequacy, for  the purpose 
of interference computations, of the potential  theory m t  be determined 
by experfmental  studies. 

The restriction  constant has been determined by assuming the  effec- 
t ive  f ree  boundary (cp = 0) to be located along the lFne between the slot 
edges. If the boundary were actually  located  outside of this line, the 
slot restriction  constant would be somewhat larger .  If the sh ts  had a 
f i n i t e  depth t, instead of being essent-  sharp-edged or i f ices ,  and 
i f  the effective free boundary were at the  outside of the slots, the 
restriction  constant would be approximately 2 = - lo& p + -. t Actu- 

A rO 

a l l y ,  it is l i ke ly  that in the  case of slots of  considerable  depth,  the 
location of the effective free b0udm-y would be a function of the  local  
outflow o r  i n f l o w .  Not only would this make any calculation of the 
ference  questionable  but it would also present  the  dist inct  
that the  correction  factor m i g h t  be an unpredictable 
s ize  and angle of  attack. 

l i  
'J 

CONCLUDING RPIARKS 

The sol=-blockage interference for a daublet on the  tunnel  axis 
and the  boundary interference for lifting w i n g s  i n  circular,  rectangular, 
and two-dimensional s lo t ted  tunnels have been calculated by stibstituting 
an equivalent homgeneous boundary f o r  the  physical boundary of discrete 
slots. I n  the  case of small wings,  the  results  calculated w i t h  the 
assumption  of homogeneity have been  found t o  be consistent with those 
calculated for the discrete  slots for 8s f e w  as four slots in  a circular  
tunnel. Furthermore, available experimental r e su l t s  f o r  blockage inter- 
ference are consistent with the results of the  present  analysis. 

Through the concept of a wall restriction  constant i t  is possible 
t o  reduce the interference due t o  all different  slatted-- configura- 
tions  for  the same tunnel shape t o  a single curve. Thus, the number of 
computations required to describe  completely t h e  interference  for a 
given-shape slotted  tunnel with different slat spacings and open ratios 
i s  greatly reduced. 

Langley Aeronautical  Laboratory, 
National Advisory C o d t t e e   f o r  Aeronautics, 

Langley Field, Va., May 12, 1953. 
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Figure 1.- Schematic  longitudinal and transverse cross-sectional views 
of a slotted tunnel with model installed, showing how ah- f l o w  out 
and in through t h e  slots aa it passes the model. 



NACA FM L53- 47 

d o  

- x b  _I 
I""""""- 

- y l = 2  
d 

- y ' =  -F 
d 

Figure 2.- Sketch sharLng physical arrangement and nomenclature used in  
equation far potential  difference across E thin, straight slot ted wall. 
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Figure 3.- Sketch of the transformation of the eectlon of the straight 
s lo t t ed  w a l l  between y I fkd i n to  an arc of a c l r c u b r  slotted wall. 
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loge csc 1 
P o  

Figure 4.- The function log, csc - mo. 1 
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Figure 7.- Solid-blockage interference for c i r c u l a r  xind tunnels with 
slotted walls. For thin i3lotB, c -log, cac - nTo. 2 1 
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(a) Height-width ratio = 1.0. 

Figure 8.- kundary-correction factcrrs for lifting wings in rectangular 
wind tunnele vith the tup and bottom walls slotted. For thin slots, 
c = - 2 -  log, j ce'c .i - 1 cos where H is t he  number of slots in one 

horizontal xall, and ro is the wen ratio of the  hcrizontal W s .  
lm . 2 
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(b) Height-xiath ratio. = 0.5. 

Figure 8.- Concluded. 
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Figure 10.- Wamformatlon of the quadrantal arc of a unit circle in to  
the quadrantal perimeter of a rectangle. 
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Ffgure ~ 12.- Soldd-blockage Interference for  'kwo-dlmenklonal slotted wind 

tunnels. For thin  slots, c 1 - a log, csc 1 mo, where d I s  the slot 

spacing, h I s  the tunnel semiheight, and ro I s  the open ra t io  of 
slotted  (horizontd) w a l l s .  
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